Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.120
Filtrar
1.
Gen Comp Endocrinol ; 349: 114468, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325527

RESUMO

Adrenaline is one of the most important neurotransmitters in the central nervous system and is produced during stress. In this study, we investigated the modulatory role of adrenaline and adrenergic receptors on the neuroendocrine Dahlgren cells in the caudal neurosecretory system (CNSS) of olive flounder. Ex vivo electrophysiological recordings revealed that adrenaline significantly increased the firing frequency and altered the firing pattern of Dahlgren cells. Moreover, treatment with adrenaline led to a significant upregulation of ion channels and major hormone secretion genes in CNSS at the mRNA levels. Additionally, treatment with adrenaline resulted in a significantly elevation in the expression levels of α1- and ß3-adrenergic receptors. Furthermore, the ß3-adrenergic receptor antagonist exerts a significant inhibitory effect on adrenaline-induced enhancement firing activities of Dahlgren cells, whereas the α1-adrenergic receptor antagonist displays a comparatively weaker inhibitory effect. Additionally, the enhanced firing activity induced by adrenaline could be effectively suppressed by both α1- and ß3-adrenergic receptor antagonists. Taken together, these findings provide strong evidence in favor of the excitatory effects of adrenaline through α1 and ß3 adrenergic receptors in CNSS to stimulate the secretion of stress-related hormones, ß3-adrenergic receptor plays a more dominant role in the modulation of firing activities of Dahlgren cells by adrenaline and thereby regulates the stress response in olive flounder.


Assuntos
Epinefrina , Linguado , Animais , Epinefrina/farmacologia , Linguado/genética , Sistemas Neurossecretores/metabolismo , Receptores Adrenérgicos/metabolismo , Neurotransmissores/metabolismo
2.
Handb Clin Neurol ; 199: 535-566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38307670

RESUMO

Migraine presents with high prevalence and similar clinical course with different disorders such as neurological, psychiatric, cardio- and cerebrovascular, gastrointestinal, metabolic-endocrine, and immunological conditions, which can often cooccur themselves. Multifaceted mechanisms subtend these comorbidities with a bidirectional link. First, a shared genetic load can explain the cooccurrence. Second, comorbid pathologies can promote disproportionate energetic needs, thalamocortical network dysexcitability, and systemic transient or persistent proinflammatory state, which may trigger the activation of a broad self-protective network that includes the trigeminovascular system in conjunction with the neuroendocrine hypothalamic system. This response results in maintenance of brain homeostasis by modulating subcortical-cortical excitability, energetic balance, osmoregulation, and emotional response. In this process, the CGRP is released in the trigeminovascular system. However, the calcitonin gene-related peptide (CGRP) plays several actions also outside the brain to maintain the homeostatic needs and is involved in the physiological functions of different systems, whose disorders are associated with migraine. This aspect further increases the complexity of migraine treatment, where standard therapies often have systemic adverse effects. On the other hand, some preventives can improve comorbid conditions. In summary, we propose that migraine management should involve a multidisciplinary approach to identify and mitigate potential risk factors and comorbidity and tailor therapies individually.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Humanos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Multimorbidade , Transtornos de Enxaqueca/epidemiologia , Transtornos de Enxaqueca/terapia , Encéfalo/patologia , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/patologia
3.
Mol Cell Endocrinol ; 584: 112162, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290646

RESUMO

Peptides and protein hormones form the largest group of secreted signals that mediate intercellular communication and are central regulators of physiology and behavior in all animals. Phylogenetic analyses and biochemical identifications of peptide-receptor systems reveal a broad evolutionary conservation of these signaling systems at the molecular level. Substantial progress has been made in recent years on characterizing the physiological and putative ancestral roles of many peptide systems through comparative studies in invertebrate models. Several peptides and protein hormones are not only molecularly conserved but also have conserved roles across animal phyla. Here, we focus on functional insights gained in the nematode Caenorhabditis elegans that, with its compact and well-described nervous system, provides a powerful model to dissect neuroendocrine signaling networks involved in the control of physiology and behavior. We summarize recent discoveries on the evolutionary conservation and knowledge on the functions of peptide and protein hormone systems in C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Filogenia , Peptídeos , Glicoproteínas , Sistemas Neurossecretores/metabolismo , Hormônios , Proteínas de Caenorhabditis elegans/genética
4.
Nat Commun ; 14(1): 8158, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071217

RESUMO

Insulin secretion from pancreatic ß cells is regulated by multiple stimuli, including nutrients, hormones, neuronal inputs, and local signalling. Amino acids modulate insulin secretion via amino acid transporters expressed on ß cells. The granin protein VGF has dual roles in ß cells: regulating secretory granule formation and functioning as a multiple peptide precursor. A VGF-derived peptide, neuroendocrine regulatory peptide-4 (NERP-4), increases Ca2+ influx in the pancreata of transgenic mice expressing apoaequorin, a Ca2+-induced bioluminescent protein complex. NERP-4 enhances glucose-stimulated insulin secretion from isolated human and mouse islets and ß-cell-derived MIN6-K8 cells. NERP-4 administration reverses the impairment of ß-cell maintenance and function in db/db mice by enhancing mitochondrial function and reducing metabolic stress. NERP-4 acts on sodium-coupled neutral amino acid transporter 2 (SNAT2), thereby increasing glutamine, alanine, and proline uptake into ß cells and stimulating insulin secretion. SNAT2 deletion and inhibition abolish the protective effects of NERP-4 on ß-cell maintenance. These findings demonstrate a novel autocrine mechanism of ß-cell maintenance and function that is mediated by the peptide-amino acid transporter axis.


Assuntos
Sistema A de Transporte de Aminoácidos , Células Secretoras de Insulina , Proteínas do Tecido Nervoso , Animais , Humanos , Camundongos , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Sistemas Neurossecretores/metabolismo , Peptídeos/metabolismo , Sistema A de Transporte de Aminoácidos/metabolismo
5.
Physiol Behav ; 270: 114306, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37516231

RESUMO

Extensive literature has reported a link between social stress and mental health. In this complex relationship, individual strategies for coping with social stress are thought to have a possible modulating effect, with sociability being a key factor. Despite the higher incidence of affective disorders in females and sex-related neurochemical differences, female populations have been understudied. The aim of the present study was, therefore, to analyze the behavioral, neuroendocrine, and neurochemical effects of stress in female OF1 mice, paying special attention to social connectedness (female mice with high vs low sociability). To this end, subjects were exposed to the Chronic Social Instability Stress (CSIS) model for four weeks. Although female mice exposed to CSIS had increased arousal, there was no evidence of depressive-like behavior. Neither did exposure to CSIS affect corticosterone levels, although it did increase the MR/GR ratio by decreasing GR expression. Female mice exposed to CSIS had higher noradrenaline and dopamine levels in the hippocampus and striatum respectively, with a lower monoaminergic turnover, resulting in an increased arousal. CSIS increased serotonin levels in both the hippocampus and striatum. Similarly, CSIS was found to reduce kynurenic acid, 3-HK, and IDO and iNOS enzyme levels in the hippocampus. Interestingly, the observed decrease in IDO synthesis and the increased serotonin and dopamine levels in the striatum were only found in subjects with high sociability. These highly sociable female mice also had significantly lower levels of noradrenaline in the striatum after CSIS application. Overall, our model has produced neuroendocrine and neurochemical but not behavioral changes, so it has not allowed us to study sociability in depth. Therefore, a model that induces both molecular and behavioral phenotypes should be applied to determine the role of sociability.


Assuntos
Dopamina , Serotonina , Camundongos , Feminino , Animais , Dopamina/metabolismo , Serotonina/metabolismo , Sistemas Neurossecretores/metabolismo , Hipocampo/metabolismo , Estresse Psicológico/metabolismo , Norepinefrina/metabolismo
6.
Trends Neurosci ; 46(4): 263-275, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803800

RESUMO

During oncogenesis, cancer not only escapes the body's regulatory mechanisms, but also gains the ability to affect local and systemic homeostasis. Specifically, tumors produce cytokines, immune mediators, classical neurotransmitters, hypothalamic and pituitary hormones, biogenic amines, melatonin, and glucocorticoids, as demonstrated in human and animal models of cancer. The tumor, through the release of these neurohormonal and immune mediators, can control the main neuroendocrine centers such as the hypothalamus, pituitary, adrenals, and thyroid to modulate body homeostasis through central regulatory axes. We hypothesize that the tumor-derived catecholamines, serotonin, melatonin, neuropeptides, and other neurotransmitters can affect body and brain functions. Bidirectional communication between local autonomic and sensory nerves and the tumor, with putative effects on the brain, is also envisioned. Overall, we propose that cancers can take control of the central neuroendocrine and immune systems to reset the body homeostasis in a mode favoring its expansion at the expense of the host.


Assuntos
Monoaminas Biogênicas , Neoplasias , Sistemas Neurossecretores , Neoplasias/imunologia , Neoplasias/metabolismo , Homeostase , Sistemas Neurossecretores/metabolismo , Humanos , Carcinogênese , Progressão da Doença , Animais , Sistema Imunitário/metabolismo , Monoaminas Biogênicas/metabolismo
7.
Inhal Toxicol ; 35(3-4): 109-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36749208

RESUMO

Air pollutants are being increasingly linked to extrapulmonary multi-organ effects. Specifically, recent studies associate air pollutants with brain disorders including psychiatric conditions, neuroinflammation and chronic diseases. Current evidence of the linkages between neuropsychiatric conditions and chronic peripheral immune and metabolic diseases provides insights on the potential role of the neuroendocrine system in mediating neural and systemic effects of inhaled pollutants (reactive particulates and gases). Autonomically-driven stress responses, involving sympathetic-adrenal-medullary and hypothalamus-pituitary-adrenal axes regulate cellular physiological processes through adrenal-derived hormones and diverse receptor systems. Recent experimental evidence demonstrates the contribution of the very stress system responding to non-chemical stressors, in mediating systemic and neural effects of reactive air pollutants. The assessment of how respiratory encounter of air pollutants induce lung and peripheral responses through brain and neuroendocrine system, and how the impairment of these stress pathways could be linked to chronic diseases will improve understanding of the causes of individual variations in susceptibility and the contribution of habituation/learning and resiliency. This review highlights effects of air pollution in the respiratory tract that impact the brain and neuroendocrine system, including the role of autonomic sensory nervous system in triggering neural stress response, the likely contribution of translocated nano particles or metal components, and biological mediators released systemically in causing effects remote to the respiratory tract. The perspective on the use of systems approaches that incorporate multiple chemical and non-chemical stressors, including environmental, physiological and psychosocial, with the assessment of interactive neural mechanisms and peripheral networks are emphasized.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/toxicidade , Sistemas Neurossecretores/metabolismo , Poluição do Ar/efeitos adversos , Encéfalo , Pulmão
8.
Front Endocrinol (Lausanne) ; 14: 1096187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755919

RESUMO

The reproductive neuroendocrine system is a key target for the developmental programming effects of steroid hormones during early life. While gonadal steroids play an important role in controlling the physiological development of the neuroendocrine axis, human fetuses are susceptible to adverse programming due to exposure to endocrine disrupting chemicals with steroidal activity, inadvertent use of contraceptive pills during pregnancy, as well as from disease states that result in abnormal steroid production. Animal models provide an unparalleled resource to understand the effects of steroid hormones on the development of the neuroendocrine axis and their role on the developmental origins of health and disease. In female sheep, exposure to testosterone (T) excess during fetal development results in an array of reproductive disorders that recapitulate those seen in women with polycystic ovary syndrome (PCOS), including disrupted neuroendocrine feedback mechanisms, increased pituitary responsiveness to gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH) hypersecretion, functional hyperandrogenism, multifollicular ovarian morphology, and premature reproductive failure. Similar to a large proportion of women with PCOS, these prenatally T-treated sheep also manifest insulin resistance and cardiovascular alterations, including hypertension. This review article focuses on the effects of prenatal androgens on the developmental programming of hypothalamic and pituitary alterations in the sheep model of PCOS phenotype, centering specifically on key neurons, neuropeptides, and regulatory pathways controlling GnRH and LH secretion. Insights obtained from the sheep model as well as other animal models of perinatal androgen excess can have important translational relevance to treat and prevent neuroendocrine dysfunction in women with PCOS and other fertility disorders.


Assuntos
Síndrome do Ovário Policístico , Gravidez , Feminino , Humanos , Animais , Ovinos , Síndrome do Ovário Policístico/metabolismo , Esteroides , Testosterona/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo , Sistemas Neurossecretores/metabolismo
9.
Neuroendocrinology ; 113(2): 120-167, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36137504

RESUMO

Extracellular vesicles (EVs) are membrane-enclosed nanoparticles that contain various biomolecules, including nucleic acids, proteins and lipids, and are manufactured and released by virtually all cell types. There is evidence that EVs are involved in intercellular communication, acting in an autocrine, paracrine or/and endocrine manner. EVs are released by the cells of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes and microglia, and have the ability to cross the blood-brain barrier (BBB) and enter the systemic circulation. Neuroendocrine cells are specialized neurons that secrete hormones directly into blood vessels, such as the hypophyseal portal system or the systemic circulation, a process that allows neuroendocrine integration to take place. In mammals, neuroendocrine cells are widely distributed throughout various anatomic compartments, with the hypothalamus being a central neuroendocrine integrator. The hypothalamus is a key part of the stress system (SS), a highly conserved neuronal/neuroendocrine system aiming at maintaining systemic homeostasis when the latter is threatened by various stressors. The central parts of the SS are the interconnected hypothalamic corticotropin-releasing hormone (CRH) and the brainstem locus caeruleus-norepinephrine (LC-NE) systems, while their peripheral parts are, respectively, the pituitary-adrenal axis and the sympathetic nervous/sympatho-adrenomedullary systems (SNS-SAM) as well as components of the parasympathetic nervous system (PSNS). During stress, multiple CNS loci show plasticity and undergo remodeling, partly mediated by increased glutamatergic and noradrenergic activity, and the actions of cytokines and glucocorticoids, all regulated by the interaction of the hypothalamic-pituitary-adrenal (HPA) axis and the LC-NE/SNS-SAM systems. In addition, there are peripheral changes due to the increased secretion of stress hormones and pro-inflammatory cytokines in the context of stress-related systemic (para)inflammation. We speculate that during stress, central and peripheral, cellular and molecular alterations take place, with some of them generated, communicated, and spread via the release of stress-induced neural/neuroendocrine cell-derived EVs.


Assuntos
Vesículas Extracelulares , Sistema Hipotálamo-Hipofisário , Animais , Sistema Hipotálamo-Hipofisário/metabolismo , Sistemas Neurossecretores/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Norepinefrina/metabolismo , Vesículas Extracelulares/metabolismo , Citocinas/metabolismo , Sistema Hipófise-Suprarrenal , Estresse Fisiológico , Hormônio Liberador da Corticotropina/metabolismo , Mamíferos/metabolismo
10.
Front Endocrinol (Lausanne) ; 13: 1019943, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36561569

RESUMO

Galanin is a neurohormone as well as a neurotransmitter and plays versatile physiological roles for the neuroendocrine axis, such as regulating food intake, insulin level and somatostatin release. It is expressed in the central nervous system, including hypothalamus, pituitary, and the spinal cord, and colocalises with other neuronal peptides within neurons. Structural analyses reveal that the human galanin precursor is 104 amino acid (aa) residues in length, consisting of a mature galanin peptide (aa 33-62), and galanin message-associated peptide (GMAP; aa 63-104) at the C-terminus. GMAP appears to exhibit distinctive biological effects on anti-fungal activity and the spinal flexor reflex. Galanin-like peptide (GALP) has a similar structure to galanin and acts as a hypothalamic neuropeptide to mediate metabolism and reproduction, food intake, and body weight. Alarin, a differentially spliced variant of GALP, is specifically involved in vasoactive effect in the skin and ganglionic differentiation in neuroblastic tumors. Dysregulation of galanin, GALP and alarin has been implicated in various neuroendocrine conditions such as nociception, Alzheimer's disease, seizures, eating disorders, alcoholism, diabetes, and spinal cord conditions. Further delineation of the common and distinctive effects and mechanisms of various types of galanin family proteins could facilitate the design of therapeutic approaches for neuroendocrine diseases and spinal cord injury.


Assuntos
Galanina , Sistemas Neurossecretores , Hormônios Peptídicos , Medula Espinal , Humanos , Galanina/química , Galanina/metabolismo , Estrutura Molecular , Hormônios Peptídicos/química , Hormônios Peptídicos/metabolismo , Medula Espinal/metabolismo , Sistemas Neurossecretores/metabolismo
11.
Cells ; 11(23)2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36497043

RESUMO

Liver fibrosis is a complicated process that involves different cell types and pathological factors. The excessive accumulation of extracellular matrix (ECM) and the formation of fibrotic scar disrupt the tissue homeostasis of the liver, eventually leading to cirrhosis and even liver failure. Myofibroblasts derived from hepatic stellate cells (HSCs) contribute to the development of liver fibrosis by producing ECM in the area of injuries. It has been reported that the secretion of the neuroendocrine hormone in chronic liver injury is different from a healthy liver. Activated HSCs and cholangiocytes express specific receptors in response to these neuropeptides released from the neuroendocrine system and other neuroendocrine cells. Neuroendocrine hormones and their receptors form a complicated network that regulates hepatic inflammation, which controls the progression of liver fibrosis. This review summarizes neuroendocrine regulation in liver fibrosis from three aspects. The first part describes the mechanisms of liver fibrosis. The second part presents the neuroendocrine sources and neuroendocrine compartments in the liver. The third section discusses the effects of various neuroendocrine factors, such as substance P (SP), melatonin, as well as α-calcitonin gene-related peptide (α-CGRP), on liver fibrosis and the potential therapeutic interventions for liver fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Humanos , Cirrose Hepática/metabolismo , Células Estreladas do Fígado/metabolismo , Miofibroblastos/metabolismo , Sistemas Neurossecretores/metabolismo
13.
Physiol Genomics ; 54(8): 283-295, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35695270

RESUMO

Military operational stress is known to increase adrenal hormones and inflammatory cytokines, while decreasing hormones associated with the anabolic milieu and neuroendocrine system. Less is known about the role of extracellular vesicles (EVs), a form of cell-to-cell communication, in military operational stress and their relationship to circulating hormones. The purpose of this study was to characterize the neuroendocrine, cytokine, and EV response to an intense. 24-h selection course known as the Naval Special Warfare (NSW) Screener and identify associations between EVs and cytokines. Blood samples were collected the morning of and following the NSW Screener in 29 men (18-26 yr). Samples were analyzed for concentrations of cortisol, insulin-like growth factor I (IGF-I), neuropeptide-Y (NPY), brain-derived neurotrophic factor (BDNF), α-klotho, tumor necrosis factor-α (TNFα), and interleukins (IL) -1ß, -6, and -10. EVs stained with markers associated with exosomes (CD63), microvesicles (VAMP3), and apoptotic bodies (THSD1) were characterized using imaging flow cytometry and vesicle flow cytometry. The selection event induced significant changes in circulating BDNF (-43.2%), IGF-I (-24.6%), TNFα (+17.7%), and IL-6 (+13.6%) accompanied by increases in intensities of THSD1+ and VAMP3+ EVs (all P < 0.05). Higher concentrations of IL-1ß and IL-10 were positively associated with THSD1+ EVs (P < 0.05). Military operational stress altered the EV profile. Surface markers associated with apoptotic bodies were positively correlated with an inflammatory response. Future studies should consider a multiomics assessment of EV cargo to discern canonical pathways that may be mediated by EVs during military stress.


Assuntos
Vesículas Extracelulares , Fator de Crescimento Insulin-Like I , Adolescente , Adulto , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia , Hormônios/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-1beta , Masculino , Sistemas Neurossecretores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína 3 Associada à Membrana da Vesícula/metabolismo , Adulto Jovem
14.
Prog Mol Biol Transl Sci ; 189(1): 1-34, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35595346

RESUMO

Animal models remain essential to understand the fundamental mechanisms of physiology and pathology. Particularly, the complex and dynamic nature of neuroendocrine cells of the hypothalamus make them difficult to study. The neuroendocrine systems of the hypothalamus are critical for survival and reproduction, and are highly conserved throughout vertebrate evolution. Their roles in controlling body metabolism, growth and body composition, stress, electrolyte balance, and reproduction, have been intensively studied, and have yielded groundbreaking discoveries. Many of these discoveries would not have been feasible without the use of the domestic sheep (Ovis aries). The sheep has been used for decades to study the neuroendocrine systems of the hypothalamus and has become a model for human neuroendocrinology. The aim of this chapter is to review some of the profound biomedical discoveries made possible by the use of sheep. The advantages and limitations of sheep as a neuroendocrine model will be discussed. While no animal model can perfectly recapitulate a human disease or condition, sheep are invaluable for enabling manipulations not possible in human subjects and isolating physiologic variables to garner insight into neuroendocrinology and associated pathologies.


Assuntos
Hipotálamo , Neuroendocrinologia , Animais , Humanos , Hipotálamo/metabolismo , Sistemas Neurossecretores/metabolismo , Reprodução , Ovinos
15.
J Neuroendocrinol ; 34(6): e13133, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474620

RESUMO

Links between the regulation of growth and energy balance are clear; to fuel growth, there must be consumption of energy. Therefore, it is perhaps intuitive that interactions between the hypothalamic - pituitary - growth hormone axis (growth axis) and pathways that drive metabolic processes exist. Overproduction of growth hormone has been associated with diabetes and metabolic disease for decades and the opposing effects of growth hormone and insulin have been studied since early experiments almost a century ago. The relationship between neuroendocrine axes can be complex and the growth axis is no exception, interacting with energy balance in several organ systems, both in the periphery and centrally in hypothalamic nuclei. Much is known about peripheral interactions between growth axis hormones and processes such as glucose homeostasis and adipogenesis. More is still being learned about the molecular actions of growth axis hormones in adipose and other metabolically active tissues, and recent findings are discussed in this perspective. However, less is known about interactions with central energy balance pathways in the hypothalamus. This perspective aims to summarise what is known about these interactions, taking lessons from human studies and animal genetic and seasonal models, and discusses what this may mean in an evolving landscape of personalised medicine.


Assuntos
Apetite , Hormônio do Crescimento Humano , Animais , Metabolismo Energético/fisiologia , Hormônio do Crescimento/metabolismo , Hormônio do Crescimento Humano/metabolismo , Hipotálamo/metabolismo , Sistemas Neurossecretores/metabolismo
16.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269579

RESUMO

Melanin-concentrating hormone (MCH) is a 19aa cyclic peptide exclusively expressed in the lateral hypothalamic area, which is an area of the brain involved in a large number of physiological functions and vital processes such as nutrient sensing, food intake, sleep-wake arousal, memory formation, and reproduction. However, the role of the lateral hypothalamic area in metabolic regulation stands out as the most relevant function. MCH regulates energy balance and glucose homeostasis by controlling food intake and peripheral lipid metabolism, energy expenditure, locomotor activity and brown adipose tissue thermogenesis. However, the MCH control of energy balance is a complex mechanism that involves the interaction of several neuroendocrine systems. The aim of the present work is to describe the current knowledge of the crosstalk of MCH with different endocrine factors. We also provide our view about the possible use of melanin-concentrating hormone receptor antagonists for the treatment of metabolic complications. In light of the data provided here and based on its actions and function, we believe that the MCH system emerges as an important target for the treatment of obesity and its comorbidities.


Assuntos
Hormônios Hipotalâmicos/metabolismo , Melaninas/metabolismo , Sistemas Neurossecretores/metabolismo , Obesidade/metabolismo , Hormônios Hipofisários/metabolismo , Animais , Metabolismo Energético , Humanos , Região Hipotalâmica Lateral/metabolismo , Metabolismo dos Lipídeos
17.
Horm Behav ; 141: 105151, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35299119

RESUMO

A large body of research has been dedicated to understanding the factors that modulate spatial cognition and attributes of the hippocampus, a highly plastic brain region that underlies spatial processing abilities. Variation in gonadal hormones impacts spatial memory and hippocampal attributes in vertebrates, although the direction of the effect has not been entirely consistent. To add complexity, individuals in the field must optimize fitness by coordinating activities with the appropriate environmental cues, and many of these behaviors are correlated tightly with seasonal variation in gonadal hormone release. As such, it remains unclear if the relationship among systemic gonadal hormones, spatial cognition, and the hippocampus also exhibits seasonal variation. This review presents an overview of the relationship among gonadal hormones, the hippocampus, and spatial cognition, and how the seasonal release of gonadal hormones correlates with seasonal variation in spatial cognition and hippocampal attributes. Additionally, this review presents other neuroendocrine mechanisms that may be involved in modulating the relationship among seasonality, gonadal hormone release, and the hippocampus and spatial cognition, including seasonal rhythms of steroid hormone binding globulins, neurosteroids, sex steroid hormone receptor expression, and hormone interactions. Here, endocrinology, ecology, and behavioral neuroscience are brought together to present an overview of the research demonstrating the mechanistic effects of systemic gonadal hormones on spatial cognition and the hippocampus, while, at a functional level, superimposing seasonal effects to examine ecologically-relevant circannual changes in gonadal hormones and spatial behaviors.


Assuntos
Hormônios Esteroides Gonadais , Hipocampo , Animais , Cognição/fisiologia , Hormônios Gonadais , Hormônios Esteroides Gonadais/metabolismo , Hipocampo/metabolismo , Hormônios , Humanos , Sistemas Neurossecretores/metabolismo , Estações do Ano
18.
Adv Nutr ; 13(3): 758-791, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134815

RESUMO

This review focuses on summarizing current knowledge on how time-restricted feeding (TRF) and continuous caloric restriction (CR) affect central neuroendocrine systems involved in regulating satiety. Several interconnected regions of the hypothalamus, brainstem, and cortical areas of the brain are involved in the regulation of satiety. Following CR and TRF, the increase in hunger and reduction in satiety signals of the melanocortin system [neuropeptide Y (NPY), proopiomelanocortin (POMC), and agouti-related peptide (AgRP)] appear similar between CR and TRF protocols, as do the dopaminergic responses in the mesocorticolimbic circuit. However, ghrelin and leptin signaling via the melanocortin system appears to improve energy balance signals and reduce hyperphagia following TRF, which has not been reported in CR. In addition to satiety systems, CR and TRF also influence circadian rhythms. CR influences the suprachiasmatic nucleus (SCN) or the primary circadian clock as seen by increased clock gene expression. In contrast, TRF appears to affect both the SCN and the peripheral clocks, as seen by phasic changes in the non-SCN (potentially the elusive food entrainable oscillator) and metabolic clocks. The peripheral clocks are influenced by the primary circadian clock but are also entrained by food timing, sleep timing, and other lifestyle parameters, which can supersede the metabolic processes that are regulated by the primary circadian clock. Taken together, TRF influences hunger/satiety, energy balance systems, and circadian rhythms, suggesting a role for adherence to CR in the long run if implemented using the TRF approach. However, these suggestions are based on only a few studies, and future investigations that use standardized protocols for the evaluation of the effect of these diet patterns (time, duration, meal composition, sufficiently powered) are necessary to verify these preliminary observations.


Assuntos
Restrição Calórica , Comportamento Alimentar , Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Humanos , Melanocortinas/metabolismo , Sistemas Neurossecretores/metabolismo , Núcleo Supraquiasmático/metabolismo
19.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163554

RESUMO

Lactation is a physiological state of hyperprolactinemia and associated amenorrhea. Despite the fact that exact mechanisms standing behind the hypothalamus-pituitary-ovarian axis during lactation are still not clear, a general overview of events leading to amenorrhea may be suggested. Suckling remains the most important stimulus maintaining suppressive effect on ovaries after pregnancy. Breastfeeding is accompanied by high levels of prolactin, which remain higher than normal until the frequency and duration of daily suckling decreases and allows normal menstrual function resumption. Hyperprolactinemia induces the suppression of hypothalamic Kiss1 neurons that directly control the pulsatile release of GnRH. Disruption in the pulsatile manner of GnRH secretion results in a strongly decreased frequency of corresponding LH pulses. Inadequate LH secretion and lack of pre-ovulatory surge inhibit the progression of the follicular phase of a menstrual cycle and result in anovulation and amenorrhea. The main consequences of lactational amenorrhea are connected with fertility issues and increased bone turnover. Provided the fulfillment of all the established conditions of its use, the lactational amenorrhea method (LAM) efficiently protects against pregnancy. Because of its accessibility and lack of additional associated costs, LAM might be especially beneficial in low-income, developing countries, where modern contraception is hard to obtain. Breastfeeding alone is not equal to the LAM method, and therefore, it is not enough to successfully protect against conception. That is why LAM promotion should primarily focus on conditions under which its use is safe and effective. More studies on larger study groups should be conducted to determine and confirm the impact of behavioral factors, like suckling parameters, on the LAM efficacy. Lactational bone loss is a physiologic mechanism that enables providing a sufficient amount of calcium to the newborn. Despite the decline in bone mass during breastfeeding, it rebuilds after weaning and is not associated with a postmenopausal decrease in BMD and osteoporosis risk. Therefore, it should be a matter of concern only for lactating women with additional risk factors or with low BMD before pregnancy. The review summarizes the effect that breastfeeding exerts on the hypothalamus-pituitary axis as well as fertility and bone turnover aspects of lactational amenorrhea. We discuss the possibility of the use of lactation as contraception, along with this method's prevalence, efficacy, and influencing factors. We also review the literature on the topic of lactational bone loss: its mechanism, severity, and persistence throughout life.


Assuntos
Amenorreia/metabolismo , Remodelação Óssea , Lactação , Sistemas Neurossecretores/metabolismo , Anticoncepção/métodos , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Prolactina/metabolismo , Regulação para Cima
20.
Adv Sci (Weinh) ; 9(13): e2104132, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35224894

RESUMO

Emerging evidence suggests that physiological distress is highly correlated with cancer incidence and mortality. However, the mechanisms underlying psychological challenges-mediated tumor immune evasion are not systematically explored. Here, it is demonstrated that acute restraint (AR) increases the level of the plasma neuropeptide hormones, kisspeptin, and the expression levels of its receptor, Gpr54, in the hypothalamus, splenic and tumor-infiltrating T cells, suggesting a correlation between the neuroendocrine system and tumor microenvironment. Accordingly, administration of kisspeptin-10 significantly impairs T cell function, whereas knockout of Gpr54 in T cells inhibits lung tumor progression by suppressing T cell dysfunction and exhaustion with or without AR. In addition, Gpr54 defective OT-1 T cells show superior antitumor activity against OVA peptide-positive tumors. Mechanistically, ERK5-mediated NR4A1 activation is found to be essential for kisspeptin/GPR54-facilitated T cell dysfunction. Meanwhile, pharmacological inhibition of ERK5 signaling by XMD8-92 significantly reduces the tumor growth by enhancing CD8+ T cell antitumor function. Furthermore, depletion of GPR54 or ERK5 by CRISPR/Cas9 in CAR T cells intensifies the antitumor responses to both PSMA+ and CD19+ tumor cells, while eliminating T cell exhaustion. Taken together, these results indicate that kisspeptin/GPR54 signaling plays a nonredundant role in the stress-induced tumor immune evasion.


Assuntos
Kisspeptinas , Neoplasias Pulmonares , Humanos , Kisspeptinas/metabolismo , Monitorização Imunológica , Sistemas Neurossecretores/metabolismo , Receptores Acoplados a Proteínas G , Receptores de Kisspeptina-1 , Transdução de Sinais/fisiologia , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...